
SKYLINE BASED

TERRAIN MATCHING

by

Lance A. Page

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

December, 1990

CIRSSE REPORT #79



CONTENTS

LIST OF FIGURES iv

ACKNOWLEDGEMENT ............................. vii

ABSTRACT .................................... viii

i. INTRODUCTION AND LITERATURE REVIEW ............. 1

1.1 Mars Rover Sample Return (MRSR) Mission .............. 3

1.2 Semi-autonomous navigation ....................... 4

1.3 Terrain matching literature review .................... 6

1.4 "What are skylines?" ........................... 7

2. TERRAIN AND MAP MODELLING ..................... 9

2.1 Coordinate systems ............................ 9

2.2 Modelling a terrain ............................ 1!

2.3 Modelling a rough map .......................... 13

2.3.1 Interpolating between map points ................ 14

2.3.2 Speeding up the interpolation .................. 15

2.3.3 Partial Derivatives ........................ 1_3

3. SKYLINE GENERATION ........................... t7

3.1 Collecting skyline points ......................... t7

3.2 Grouping point into curves ........................ [9

3.3 Interpolating skyline curves ....................... I9

3.4 Examples of skylines from the global map ............... '21

4. TERRAIN MATCHING ALGORITHM .................... 23

4.1 Formulation: a translation between curves ................ 24

4.2 Method: the Max-Min Principle ..................... 26

4.2.1 Max-min exceptions ....................... 29

4.3 Implementation: terrain matching algorithm .............. 31

4.4 Curve correspondence ........................... 33

4.5 Computing she max-rain ......................... 33



4.6 Direction-to-intersect measurements................... 35

4.7 Vertical translation ............................ 36

5. SIMULATION RESULTS ........................... 38

5.1 Individual pairs of curves......................... 38

5.2 Whole setsof curves ........................... 46

6. CONCLUSION ................................. 60

LITERATURE CITED .............................. 64

APPENDICES ................................... 66

A. SOFTWARE SUMMARY: PROGRAMS AND MODULES ......... 66

.o°

111



LIST OF FIGURES

2.2

2.3

3.1

3.2

3.3

4.1

4.4

5.1

5.2

5.3

5.4

5.5

Example skylines: "rolling hills" and "bumps." ........ 8

Relationships among the global(g), local (/), and star (*) co-

ordinate systems .......................... 10

Simulated terrain. Grid shown has 5 m by 5 m resolution. 1I

Parameters of the Map Model .................. 14

Example terrain section, showing two skyline points ...... 18

Skyhnes from the rough map: Vantage point (0., -5., 5.28),

yaw = 90 ° .............................. 22

Skylines from the rough map: Vantage point (-10., 17., 2.00),

yaw = 90 ° .............................. 22

Relationships among the global(g), local (l), and star (*) co-

ordinate systems .......................... 25

Illustration of the dagger (t) coordinate system ......... 26

Max-rain exceptions due to noncorresponding endpoints: on

the left, discarding the discrepancies which terminate on end-

points is sufficient, but oll the right it is not. (Dashed vectors

represent discarded discrepancies.) ............... 30

Max-rain exceptions due to using normal-to-intercepts on noisy

or sharply turning data ...................... 31

Star and dagger curves for noiseless test case .......... 40

Height data for the noiseless star and dagger curves ....... 40

Normal-to-intersect vectors from the noiseless dagger curve to

the star curve ............................ 42

Normal-to-intersect vectors from the noiseless star curve to

the dagger curve .......................... 42

Direction-to-intersect vectors from the noiseless dagger curve

to the star curve .......................... 43

iv



5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5. '22

Direction-to-intersect vectors from the noiseless star curve to

the dagger curve .......................... 43

Curve match based on direction-to-intersect averaging for the

noiseless curves ........................... 44

Three versions of the "local" system: the local (l), dagger (t),

and double-dagger (:[:) coordinate systems ............ 44

Matching of the vertical data for the noiseless case, based on

the correspondence developed from the horizontal data ..... 45

Star and dagger curves for noisy test case ............ 46

Height data for the noisy star and dagger curves ........ 47

Normal-to-intersect vectors from the noisy dagger curve to the

star curve .............................. 47

Normal-to-intersect vectors from the noisy star curve to the

dagger curve ............................ 48

Direction-to-intersect vectors from the noisy dagger curve to

the star curve ............................ 48

Direction-to-intersect vectors from the noisy star curve to the

dagger curve ............................ 49

Curve match based on direction-to-intersect averaging for the

noisy curves ............................. 49

Matching of the vertical data for the noisy case, based on the

correspondence developed from the horizontal data ....... 50

Example 1: the "true" location of the vehicle .......... 5i

Example 1: sequence of vantage estimates ............ 53

Example I: corresponding curves for the initial estimate (hor-

izontal data) ............................ 54

Example 1: corresponding curves for the initial estimate (ver-

tical data) ............................. 54

Example 1: corresponding curves for the final estimate (hori-

zontal data) ............................. 55



5.23

5.24

5.25

5.26

5.27

5.28

5.29

Example 1: corresponding curves for the final estimate (ver-

tical data) ............................. 55

Example 2, horizontal curve data ................. 56

Example 2 results ......................... 57

Example 3, horizontal curve data ................. 57

Example 3 results ......................... 58

Example 4, horizontal curve data ................. 58

Example 4 results ......................... 59

vi



ACKNOWLEDGEMENT

I wish to expressmy appreciation to C. N. Shen, for the time and confidencehe

invested in me as this work progressed.

Specialacknowledgementalsoto the staff and fellow students of CIRSSE,who

havemade it an enjoyableplaceto work.

Finally I expressthanks to my mother Loraine and stepfather George,for their

love and unflinching support through theseyears.



ABSTRACT

This thesisdescribesskyline-basedterrain matching, a new method for locating the

vantagepoint of stereocameraor laser range-finding measurementson a global map

previously preparedby satellite or aerial mapping. The orientation of the vantageis

assumedknown, but its translational parametersare determined by the algorithm.

Skylines, or occluding contours, can be extracted from the sensorymeasure-

ments taken by an autonomousvehicle. They canalso be modelled from the global

map, givena vantageestimate to start from. The two setsof skylines, representedin

cylindrical coordinatesabout either the true or the estimated vantage,areemployed

as "features" or referenceobjects common to both sourcesof information. The ter-

rain matching problem is formulated in terms of finding a translation betweenthe

respectiverepresentationsof the skylines, by approximating the two setsskylinesas

identical features (curves) on the actual terrain. The searchfor this translation is

basedon selectingthe longestof the minimum-distance vectorsbetweencoorespond-

ing curves from the two sets of skylines. In successiveiterations of the algorithm,

the approximation that the two sets of curves are identical becomes more accurate,

and the vantage estimate continues to improve.

The algorithm has been implemented and evaluated on a simulated terrain.

Illustrations and examples are included.

viii



CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

The task of terrain matching is to check or refine an autonomous vehictes's estimate

of its own vantage, that is, position and orientation of its visual sensors with respect

to a "global map" of the terrain. Terrain matching is one of the basic subtasks of

autonomous vehicle navigation. Once the vantage is established, the vehicle may

perform path selection based on its current position, the information from both

the global map and its sensors, and whatever instructions have been issued to the

vehicle. It may then proceed to move along the selected path segment by dead

reckoning, to a new position from which new sensor measurements may be taken.

Terrain matching is an important step in the autonomous vehicle's navigation

primarily because errors in dead reckoning, for instance due to slipping, must not,

be allowed to accumulate. If the position errors did accumulate, then the difference

between where the vehicle "thought" it was and where it actually was would even-

tually grow until the vehicle was irrecoverably lost. Terrain matching corrects such

errors before they get out of control.

We have developed a new method for performing the terrain matching, suitable

for semi-autonomous navigation over a 2_-D unstructured, partially known terrain.

"2½-D unstructured" refers to a terrain on which the ground height is an arbitrary.

continuous function of horizontal position. Caves or overhangs violate such a terrain

model. _Partiailv known" means that we are provided a rough, global map of die

terrain ahead of time. The case of the Mars Rover, on the Mars Sample Return

Mission is one such application[i, 2]. In this case, the global map will consist

of terrain height samples based on satellite observations made before the Rover's

deployment.

The new technique, called skyline-based terrain matching, uses sk'yii_zes as



features which are common to both maps in order to determine the error in the

current vantage estimate. _Local skylines" are the skylines, or visual occluding

edges, which the vehicle "sees" with its three-dimensional (3-D) sensors. They can

be generated simultaneously with the local map, and in fazt mark the edges between

visible and hidden regions of the terrain. "Global skylines" are the curves that the

vehicle expects to see, based on its expected or a priori vantage estimate, and the

global map. Each iteration of the algorithm generates a set of global skylines for the

most recent vantage estimate, compares them to the local skylines, and produces a

new vantage estimate.

The vantage has six parameters: three for translation, and three for orientation

(yaw, pitch, and roll). In the current formulation of the terrain matching algorithm,

all three orientation parameters are assumed known. For simplicity, we assume that

the vehicle's pitch and roll are zero.

We proceed with the introduction by describing the context in which our

development was originally formulated: the Mars Rover Sample Return (MRSR)

Mission; next we outline a whole semi-autonomous navigation paradigm, suitable

for the MRSR application: we overview some of the alternative approaches So terrain

matching and related problems: and we conclude the introduction by clearing up

the concept of skylines.

The remainder of the thesis is presented as follows: Chapter 2 devetops the ter-

rain and map models on which the terrain matching algorithm has been tested and

evaluated; Chapter 3 describes a basic component of skyline-based terrain matching:

the method for generating skylines from the global map. Chapter 4 describes the

specific formulation and implementation of the skyline-based terrain matching algo-

rithm, except for one part of the algorithm, called "curve correspondence," which

has not been developed: Chapter 5 presents results of simulations of the algorithm.



including experiments which illustrate each main step of the terrain matching algo-

rithm, as well as several which demonstrate the whole algorithm at work; Chapter

6 concludes the thesis, with a discussion of the results and suggestions for future

work. To a large degree, this thesis brings together the work presented in the three

papers [3, 4, 5], with some details and results heretofore unpublished.

1.1 Mars Rover Sample Return (MRSR) Mission

The Mars Sample Return Mission demands a roving vehicle capable of traveling

to different locations, extracting surface samples (dirt and rocks), and returning

them to "pristine" chambers in a Mars Lander which will carry the samples to Earth.

The robot will remain on Mars to perform reconnaissance and other experiments. Its

navigation must be at least semi-autonomous; communication delays between Earth

and Mars preclude tele-operating the vehicle to make local navigation decisions

during a long distance traversal.

We axe developing a semi-autonomous navigation scheme suitable for the Mars

Rover's mission. We assume that the robot is equipped with stereo cameras, and/or

a laser range-finder. In addition, gross terrzdn data from previous observations.

particularly satellite photographs, are available. A path selection algorithm uses

both of these sources of information to choose one segment at a time of a patt_

leading to a predefined destination. [n addition, a gross path plan which the pad1

selection algorithm is expected to roughly follow may already be provided.

The satellite observations give a rough global map of the terrain surround-

ing the robot, and the sensory observations provide a local map. Each source or

information has advantages and limitations. The rough map provides information

which may be hidden (occluded) from the sensors, but it is limited in accuracy and

resolution; the terrain height samples will likely be on the order of three meters

apart[6]. The local map includes much more detail, but is limited to t.he _errain



features that are visiblefrom the robot's vantage point (the part of the robot where

the visual sensors are mounted). Additional limitationsmay apply to the sensory

data, depending upon which type of instrument isused.

1.2 Semi-autonomous navigation

Semi-autonomous navigation refersto an unmanned vehicle'sability,given its

startingposition,itsdestination,and rough plan to get there,to reach the destina-

tion without further instructions.Semi-autonomous navigation typicallyconsist of

four main steps, repeated until the destination is reached (adapted from [3, 2, 7]):

1. Sensing the environment in order to build a three-dimensional local map, which

contains detailed information about a limited, visible region of the terrain.

2, Terv'ain matching, also known as robot localization [8] or position estimation

[9, 10], which determines the relationship between the local map and some

fixed, global reference. This relationship is expressed as the vantage, which

is the location and orientation of the vehicle's sensors with respect to some

global reference.

3. Path selection, which selects the next five to twenty-five meter segment of

the journey', based upon mission safety, expediency, fuel conservation, and

expected visibility at the next stopping point.

4. Moving the vehicle along the selected path segment.

_Ve shall now elaborate upon the steps listed.

The robot's onboard vision system provides the information necessary to per-

form path selection according to relatively fine features of the terrain. This int'or-

marion will be in the form of an elevation map (i.e. vertical height as a function of

horizontal position), called the "'local map." generated from the sensory depth map.



5

In addition to the elevation map, a set of skylinesbasedon the sensors is produced

as a basis for relating the local map to the rough map.

For a depth map from either range finders and stereo cameras, the skylines

can be found as discontinuities (or large first difference, for discrete data) in range,

once a depth map has been generated. In addition, the cameras can use clues of

color and shade change_ to detect the skylines[ill.

Terrain matching refers to estimating the location and orientation of the robot

by comparing the skylines which it was expected to see (based on the rough map)

with those that it "actually" sees (with its sensors). The location and orientation of

the robot (or more precisely, of its sensors) have a total of six parameters: three for

translation (z_, y_, and z_,), and three for orientation (O_ for azimuth or yaw, 3_ for

pitch, and @_ for roll, i. e. the system III Euler angles [12]). Collectively these are

called the vantage, V = [z_, y_, z,,, O,,, fl,,, _]T. The kinematic relationship between

the mounting of the sensors and the body of the robot then determines the robot's

_position."

Based on both maps available to the robot, a path segment is chosen according

to the following criteria:

• Amount of progress that the segment makes toward the destination, and/or

deviation that it represents from the gross path.

• Inpath and crosspath slopes. Excessive inpath slopes can cause traction to

be lost, and energy to be wasted. Excessive crosspath slopes jeopardize the

vehicle's lateral stability.

• Obstruction heights (bottom-of-vehicle clearance) along the path.

• Predicted degree of visibility at the next stopping point.

The detailed information in the local map is emphasized in the path selection.

Since the rough map is not a reliable source of information for all the possible hazards



at any part of the terrain,the robot willnot actually proceed to or across any part

of the terrainwhich itcannot observe locallywith itsown sensors. Nevertheless, the

knowledge that the rough map offersabout upcoming terrain,however incomplete,

may be important for evaluating the desirabilityof the next stopping point.

The last step in each navigation cycle is to execute the selected path. We

assume that dead reckoning controlon the robot iscapable of moving the robot with

reasonable accuracy through the selected path. Position errorswillinevitably result

from the dead reckoning, but the terra.inmatching performed at each navigation

step prevents the errorsfrom accumulating and growing too large.

1.3 Terrain matching literature review

Slight variants of the problem we call terrain matching have been referred to

in the literature under several terms, including scene matching, the pose problem,

or robot localization. The crux of the problem is to determine the relative positions

of two (or more) sensors, by comparing the data which is provided by the sensors.

The problem arises in a wide variety of applications of autonomous mobile

systems. In our case. one set of sensors is on the Mars Rover, and the other is

the orbiting array of sensors that were used for generating the global map, and we

perform the terrain matching to correct for errors in the dead reckoning path (and

in the position estimate of the previous stopping point). Our application is in an

unstructured, roughly mapped terrain which lacks distinct "features" such as roads,

boulders, signposts, etc., which are perceptible from both the orbital sensors and

the onboard sensors: our approach is treat the skylines visible from the onboard

sensors as features (or pseudo-features) which can also be constructed from the

global map data. In addressing the same problem, Gennery[13] uses an "iconic"

approach, matching _the entire matrix of data in the local map to the global map.

without attempting to reduce the data to 'features" ahead of time.



Much investigation has been done on the matching/localization problem in

more structured environments, e.g [10, 14]. Lee etal [15] proposed the deployment

of "indication-posts," to facilitate navigation through unfamiliar environments.

Much work has also been done in the area of fusing successive local maps

into one coherent representation, particularly in outdoor, reconnaissance applica-

tions, e.g. [16]. Hebert etal [11, 17] perform sensory map fusion for the Mars Rover

application by employing both feature-based and iconic stages of matching. The

advantage in the map-fusion task over the terrain matching task, however, is that

the resolutions of the information sources are similar, and thus the features visible

(such as boulders) to them are more naturally comparable.

1.4 "What are skylines?"

In the most intuitive terms, skylines are the basic curves which we would draw

in a crude depiction of a scene, especially mountains or "rolling hills." such as in

Figure 1.1. Skylines are the occluding edges, or local horizons, of the terrain that

are visible from some vantage point above the terrain. They are 3-D curves, even

though they are characterized by their behavior on the 2-D image projections onto

their vantages.

olGeometrically, skylines on ,_-D terrain can be defined as the connected sets

of points on the terrain where, in terms of" spherical coordinates about the vantage

point, the following conditions hold: first, that there is a local maximum of elevation

angle with respect to radial distance from the vantage; and second, that the point

is not obscured by a skyline curve crossing the same azimuth, which is closer to the

vantage and has a higher elevation angle.



8

Figure l.l: Example skylines: _rolling hills" and _'bumps."



CHAPTER 2

TERRAIN AND MAP MODELLING

This chapter describes how we have modelled a terrain and a rough map of that

terrain,for the simulation and testing of our terrainmatching algorithm.

2.1 Coordinate systems

Three main coordinate systems are used:

• Global coordinates. A global, rectangular reference frame, (x g, yg, zg), is fixed

to the terrain with the yg-axis pointing North, and z_-axis pointing East, and

the z=-axis pointing straight up. (Planetary curvature is not considered in this

model.)

• Local coordinates. A local coordinate system, (xt, f,z t) originates at the

vehicle's vantage point, and the relationship between the local and global

coordinate systems is a translation:

xg --

-="7 = Z v "F ~~1

that the local coordinate system does not rotate, even though the vehicle itse!f

may rotate.

• Star coordinates. A coordinate system called the star (_-) coordinate system

originates a_ the current vantage estimate, and relates to the global svstem as

The vantage point is always assumed be two meters above the terrain. (Note



10

Figure 2.1:

systems.

y.--

"%v

(G)oDIII tlplerllnce point)

Relationships among the global(g), local (l), and suar (_) coordinate

_O]JOWS:

x g = i,_ + x"

y_ = _+y" (2.2)

The relationships among the global, locM, and star coordinate sys+erns are

Jllus_rar.ed in Figure 2.1. _t Js emphasized that the transformation from the

global to the star coordinate system is known exactly, whereas the Cransfor-

marion to the local coordinate system, fixed to the true vantage, is not.

Throughout this report, each cylindrical coordinate system is related to its

corresponding rec_a.ngular coordinate system with 8 (azimuth) measured counter-

clockwise from the ='-axis: p as the length of the horizontal projection: and = the



11

/ / /

/ / , .," j
I " , J

liilillllllillllli ! Illlllllll tllllllllllllllllii illll

• Illlllll ill I lllll lllilti_

Figure 2.2:

!

Simulated terrain. Grid shown has 5 m by 5 m resolution.

same as the rectangular z. Mathen'mticMly,

e = atan2(z, y)

. = v_ (2.3)

where the atan2(z, y) function is a special version of azctaJa(yi=), which insures that

the resulting angle is in the appropriate quadrant.

2.2 Modelling a terrain

The terrain is modelled by a mathematic.al terrain jCanction :(z, y). The terrain

function currently used is depicted in Figure 2.2. and consists of an "infinite egg-

carton" shape with a monolith superimposed on it to break the monotony.

The underlying, mathematical terrain function is

:(z,y) = f(z)g(y) C2.4)



12

where f(z) and 9(y) are periodic functions in x and y. f(z) will now be described

in detail; the development of 9(V) is completely analogous.

The function f(x) is defined as

f(:_) = [,_ + a_(:_- x.) _+ ,_.,(x- _:.)"1(-1)" (2.s)

l_+5_Jm = L 2z., (2.6)

a:, = 2mx,,_ (2.7)

where l:

and x=, no, a2, and a4 are constants described below. Within any domain of -z_ <

z < z,,,, f(z) is simply a symmetric, fourth-order polynomial function. Throughout

the domain x E "_, f(z) is C2-continuous and periodic.

The constants no, x,,_, and z,lo_,_represent the peak magnitude of the function,

one fourth the period of f(x), and the maximum slope of f(z), respectively. C2-

continuity requires that

a2

64

Similarly for function g(y),

4no -- x,_]z,lop+

= 2:_ ('-"_)
2no - z,_ / :r,,_ope

= (2.9)
9 4
--'_rn

air) = (bo+ _(v - v.) 2+ b,(v - v.)')(-1) _, (2.10)

n = |/ y + Y=

L 2y=

y, = 2ny,_,

4bo - Y,,_/Y,lo_,,
b2 =

2v_.
2b0 - y,_/ Y,Lo_,,

b4 =
2y_

t Definition: _j equals the greatest integer that is less than or equal to p.



13

The resulting z(z,y) is periodic in both z and y, with periods of 4z,, and 4y,,.

It presents an "infinite egg carton" effect, with alternating hills and depressions

along either direction.

The values of ab, x,,,, y,,,, z,t,,_, and y,_,n,_are called the terrain specifications.

Letting

_o = bo= v_ (2.15)

Eqs. 2.4-2.15 completely specify z(z, y) in terms of these spedfications. In practice,

the coefficients a0, a2, a4, bo, b_, and b4 axe calculated only once for a set of terrain

specifications. To compute a particular z(x,y), (x - z,) and (y - y_) along with

(-1) '_ and (-1)" are calculated, and then Eqs. 2.4, 2.5, and 2.10 axe applied.

The partial derivatives of z with respect to z or y are easily calculated from

Eqs. 2.4, 2.5, and 2.10 as follows:

0z(x,y)
- g(y)(2a_(x - _,) + 4a4(_ - _,)3)(-1)_ (2.16)az

az(_, y)
- f(z)(2b_(y - y,) + 4b4(y - y,)3)(-l)'_ (2.17)

oy

2.3 Modelling a rough map

Intuitively and mathematically, the map is an estimation of the terrain. Our

map model provides accurate values of z,,(x, y) only for discrete values of z and y.

For any (x, y) that does not happen to be one of these "known" map points, =,_(z. y)

must be computed based on nearby map points.

Refer to Figure 2.3. The discrete distance between map points in the z and

y directions is the resolution _,,, of the map. Every position (z, y), including map

points, has a pair of map indices (i,,,, j,,,),



14

Figure 2.3:

I one m_p square

I
I

Parameters of the Map Model

and as a result,

(2.20)

Each pair of map indices thus defines a map square in the zy-plane, with its four

corners numbered as in Figure 2.3.

2.3.1 Interpolating between map points

The basic interpolation scheme used is simple. For any position (z,y), the

value of :_- is interpolated from the known values of z,_ at the corner points of the

map square which surrounds (z,y), according to the equation:

zm = Co -_ cl= -_ c2y + c3zy (2.21)

to the known values of :,_ at the corner points of the map square which contains



15

Assigning (Zo, Yo)... (z3, Y3) to the corners of the map square, the coefficient

vector c is calculated as

i'co

C1

c = c2 ] = A-1z (2.22)

cz I

where

A

I Xo Yo xoYo

I xl Yl xtyl

i x2 Y2 x2y_

I z 3 Y3 _3Y3

Z --"

 (xo,yo)

z(z , yt)

z(z ,

 (z3, y3)

2.3.2 Speeding up the interpolation

Two modifications to the basic interpolation scheme make it much more effi-

cient: translating the process, and buffering the coefficient vector.

To eliminate the matrix inversion we apply the following translation:

where the origin of the z, and y, axes

This changes Equation 2.21 to

is the 'lower left' corner of the map square.

z_ = c_o + _tx, + c,.2y, + c-,.ax,.y,., c) .-.}C-_5)

with solution,

c, = A;'lz. (,.,G)

The key to the savings is that the relative corner positions are always she

same. For instance, if the four corners of the map square are numbered s_ar_ing at

'The "r" subscript is ['or "relative."



16

the z,.-y,, origin and counting clockwise, then

For all (x, y): A, =

1 0 0 0

i A_ 0 0

i A_ A_ A_ 2

I 0 A_ 0

(2.27)

Thus A_ "I only needs to be computed and stored once--- the matrix inversion is

effectively eliminated.

Very often, points are "looked up" on the map in groups, and two consecutive

map inquiries are made in the same map squaxe (e. g. at increments along a line

in Section 4.2). This case occurs so commonly that it is worthwhile to retain the

"previous" coefficient vector and map indices. If the map indices of (x,y) match

the map indices that the coefficient vector was most recently calculated for, then

the old coefficient vector may be used. The steps of looking up four z's from the

map and multiplying A_ "I by z are eliminated, at the cost of comparing two pairs

of integers.

2.3.3 Partial Derivatives

The estimated partial derivatives of :,_ with respect to z or y are given _ (see

Equation 2.25):

a=,,,(z,y)
= c_L+ c_y (2.28)

Oz

O=,,,(z,y)
- c,-2 + c,.zz (2.29)

Oy

Since these are the same coefficients as the ones used for calculating :m(z. y),

the steps for calculating z,,, and its partial derivatives are identical except for the

finalstep of applying Equation 2.25.0_.28,or 2.29.



CHAPTER S

SKYLINE GENERATION

A set of skylines based on the rough map can be generated for any vantage point

above the terrain. (The robot's vantage point is normally assumed to be two meters

above the terrain.

This chapter describes how a set of skyline curves visible from a particular

vantage point are generated based on information from the rough map.

The skyline curves axe generated in three steps: collecting individual ridge

points (Sect. 3.1); grouping the points into sets representing curves (Sect. 3.2);

and interpolating between the points, i. e. connecting them, for each skyline curve

(Sect. 3.3).

S.1 Collecting skyline points

The algor]thm for collecting skyline points iterates through a series of azimuths

which span a predefined range of directions centered about the vehicle's yaw, and

which axe sepaxat.ed by equal intervals. Each azimuth is processed by the following

steps:

1. _Look up" a series of terrain height samples z_(z, y) from the rough map, along

a line which in the horizontal projection starts at the vantage and proceeds in

the direction of the azimuth. This generates a planar cross-section, or terrain

section of the environment according to the map.

2. Along that section, detect local peaks of elevation angle _ with respect to

horizontal distance p. (It can be shown that a maximum in 3 with respect

to p is equivalent to a maximum in 3 with respect to radial distance r.) A

local peak is detected when one sample elevation angle is greater than both

[T



18

Section Vie 

Example terrain section, showing two skyline points.

of its neighboring samples. A quadratic function of fl vs. p is fitted to each of

the three-sample sequences, and the maximum of each quaxlratic function is

calculated and stored as a ridge point.

3. The ridge points are converted into cylindrical, star coordinates as follows:

0" = (azimuth for this terrain section)

p" = p (3.1)

=" = ptazi_

where p and _ axe the horizontal distance and elevation angle, respectively,

from the vantage to each skyline point.

Figure 3.1 shows a terrain section in which two ridge points have been found.

The increments of p in the samples of a terrain section are made smallest near

the rover, because distortions in the data (caused by sampling and interpolar.ion)

have their greatest effect on the skyline image when p is small. A quadratic function



19

is used for p; the sequence of p increments is linear. The quadratic function was

chosen over, say, an exponential or reciprocal function, to avoid over-dramatizing

the effect. The result yields dense samples near the rover, without unreasonably

sparse samples farther out.

3.2 Grouping point into curves

As collected above, the skyline points comprise a big set of individual points.

The next step is to group the points into curves, where each curve is represented

by an ordered set of points. Points are "connected" into curves according to two

criteria:

1. The two points are from adjacent terrain sections in terms of how the ridge

points were collected, but not from the same one.

2. The difference between the p's of the two points must not exceed a certain

portion of their average p.

The implementation takes advantage of the fact that the ridge points have been

collected monotonically in azimuth.

Note that, even after grouping, the ridge curve is still merely a discrete set of

points. The next section discusses how a continuous curve segment is reconstructed

from the discrete curve data.

3.3 Interpolating skyline curves

Each skyline is interpolated into a smooth curve using natural cubic spkines of

p and z parameterized by 0. The splines result in C2-continuous functions a p(0) and

aC2-continuous means thaL not only function p(O) is continuous, but also the first and second
derivatives ofp with respect to 0 are continuous. The same is true for :(0) and its first and second
derivatives.



2O

z(O) passing through the individual skyline points collected from either the global

map or the sensor data.

The cubic spline interpolation is performed with the spa.±ae() and splint()

subroutines of [18]. Interpolation of p(0) is described below; the procedure for

interpolating z($) is identical.

The spl±neO routine calculates a list of second derivatives, p" = d2p/d6 2, to

accompany the discrete 8 and p values. The spline can then be interpolated (with

function splint ()) as:

p(O) = .4pj + B&+_ + Cp_ + Dp_+ 1 (a.2)

where 8j, Pi, PY, 8.i+_, Pi+_, and P'j+I axe the stored spline parameters at each end

of the interval containing 0, and

Oj+l - O
A --

Os+ - Oj
0 - 6_

B -
0.i+1 - 0:

c = l(Aa - ej):
t}

D = l(Ba - B)(Oi+l - Oj):

(3.3)

(3.4)

(3.5)

(3.G)

This interpolation has the following properties:

1. Each segment is a polar cubic polynomial, i.e. a cubic polynomial in polar

coordinates.

2. The spline passes through all points in the list of discrete samples.

3. The spline is C2-continuous, meaning it is continuous, and has continuous first

and second derivatives.

4. The second derivative, p" is constrained to be zero at the two endpoints of the

interpolated curve. This property makes it a so-called "natural sptine."



u

21

The first derivative may be calculated as:

dp(O_) = Pj-.I.1 - Pj 3A 2 -- 1(ej+, - 8j)p_ + 3B2 - 1 (oj+, - ej)p_+l (3.7)
dO 0j+ 1 -- Oi 6 6

Once the splines are calculated, the curves are available as continuous func-

tions, pt(Ot), zt(St) for the dagger curves, and p'(O*), z'(8") for the star curves.

The interpolated functions are defined throughout the domain were only defined be-

tween the endpoints of the curves, and the discrete samples from which the splines

were interpolated become transparent to the algorithm.

3.4 Examples of skylines from the global map

Examples of skylines collected from the rough map are shown in Figures 3.2

and 3.3. The 3-D skyline curves are shown in two views-- a "forward" view looking

out the front of the robot (in spherical dimensions) to show the elevation data, and

a "top view" looking down at the curves, to show the curves' ranges from the robot.

An additional view shows the robot's location on the terrain for which it collected

the skylines.



0")

I •

_...o ............................ ._................. aiL..ooo ........ ,

:_ _ _._. : _

10.0,_5.0)

Figure 3.2: Skylines from the rough map: Vantage point (0., -5., 5.28), yaw = 90 °.

I I I

L:I_.t)...... _ ...............'gI}'Z,"........................"".'.'.'.'.'.'_

(- tO.O.I?.Of

7

Figure 3.3: Skviines from the rough map: Vaa_age point (-10., 17., 2.00

90 ° .

VB,W "--



]

CHAPTER 4

TERRAIN MATCHING ALGORITHM

The terrain matching algorithm's task is to find zv, y,,, and zv, the translational

parameters of the vantage with respect to the global coordinate system (x 9, yg, zg),

fixed to the terrain. As mentioned previously, the vantage yaw (6_) is assumed

known, and pitch and roll are assumed to be zero. 8. is the direction that the

vehicle is facing in the horizontal projection, measured counter-clockwise from the

2g-aXiS.

The terrain matching algorithm receives as input:

1. An initial vantage estimate, based on a previous position of the vehicle, and

on the path which it has approximately followed from that position.

2. A set of local skylines, extracted from 3-D vision or laser ranging sensory

information. Like the global skylines described in Chapter 3, horizontal radius

and vertical height of the local skylines are parameterized as functions of

azimuth, but these measurements are of course made with respect to the true

or "local" vantage.

It also has access to the global map, from which it can generate a set of global

skylines for any trial vantage above the terrain.

To update the vantage estimate, the algorithm first generates a set of "global

skylines" from the global map using the procedure described in Chapter 3. It then

compares the two sets of skylines in order to relate the local map to the global

map and thus determine the vantage. This comparison is formulated in terms of

estimating a translation between the set of local skylines and the set of global

skylines.

23



24

Formulating the terrainmatching task in terms of a translation between the

curves is described in Section 4.1. The basis of our method for estimating the

translation is described in Section 4.2. The overaU terrain matching algorithm is

%ummarized" in Section 4.3, and its computational details are described in Sections

4.4-4.7.

4.1 Formulation: a translation between curves

We repeat Figure 2.1 here as Figure 4.1, this time concentrating on the skylines

in the figure. There are three sources of differences between the local (l) and global

(*) skylines which will be enumerated shortly; however, we consider the two skylines

to represent the same feature, from two different vantages. To the extent that

the two skylines do represent the same curve with respect to the terrain, their

representations with respect to the two vantages are related by a mere translation,

and this translation is the error in the current vantage estimate. This is because

the vantages themselves are related by a translation (with the orientations equal by

assumption). To estimate the translation between the curves with respect to their

respective vantages is to estimate the vantage error, which we add to our current

vantage estimate for an improved vantage estimate.

Figure 4.1 shows the two skylines with their proper relationships to the global

reference. Since we have formulated she problem in terms of a translation between

the representations of the skylines with respect to their respective vantages, however,

the local skylines are translated (by a yet unknown quantity) so that their vantage

is coincident wish that of the global (*-) skylines.

The translated versions of the local skylines are called the "dagger:' (t) curves.

The relationship of the dagger curves to the dagger system is identical to that of the

local curves to the local coordinates, but the dagger coordinate system is coincident

with the star system. See Figure 4.2, Of course, no computational conversion [rom



25

I

Figure 4.1:

systems.

'9

y.

y_--

yz V_ ..,/gloOe! skyline" (_-eurve)

"loc:a! skyline"

(J_ -(:urve)

_ X t

_Aatuat Ioaation }

"-. !

(Expectea location)

II reteronce Do*n_)

Relationships among the global(g), local (l), and star (w) coordinate

local to dagger skylines actually takes place; the translation of the local skylines

is merely a distinctionin the geometric interpretationof how we are relating the

data to each other. The two setsof skylines axe thus "overlaid" with each other, in

the star and dagger coordinate systems. Ifthe vantage estimate has no error,then

the translationof the local skylines to dagger coordinates is null,and the star and

dagger curves should remain approximately coincident;ifan error ispresent in the

vantage, then the star and dagger curves should differby a translationequal to the

error.

There axe three causes of differences between the local and global skylines,

even before translating the local curves into dagger curves:

1. Errors in she global map cause the actual (local) and predicted (star) skylines

to differ.



2G

Figure 4.2: Illustration of the dagger (t) coordinate system.

2. Any error in the vantage estimate causes differences between the curvea, be-

cause skylines axe vantage-dependent.

3. Numerical errors from sampling and interpolation, both in the generation of

global skylines and in the subsequent spline interpolation of both sets of sky-

lines.

As long as the vantage estimate improves in each iteration of the algorithm, the

differences resulting from the second cause listed will diminish.

4.2 Method: the Max-Min Principle

We be_n the development of our method for finding the translation between

two sets of curves by presenting the max-re_in principle:4:

4The term _max-min" in this context has nothing to do with max-rain game theory in the fieid
of ar_ificiM intelligence.



q

27

Max-rain Principle: The minimum distance from any point on a curve, to a

translated version of the same curve, is less than or equal to the length of the

translation.

(In this case, "same curve" means that it is strictly congruent to the first. Later we

will relax this restriction, particularly to allow for a pair of curves whose end points

might not correspond, and will have to consider possible exceptions to the original

principle.)

The principle is justified as follows: there is at least one point-- the corre-

sponding point-- on the translated curve which is the length of the translation away

from a point on the original curve. There may also be other points on the trans-

lated curve which are closer than the corresponding point. Therefore, the minimum

distance is less than or equal to the length of the actual translation.

The longest of these minimum-distance vectors is called the maz-min. We pos-

tulate that under most conditions, the max-re.in approaches the actual translation

between the curves. (These conditions, for the max-rain computations which we use,

will be stated shortly.) The max-min could be used an estimate of the translation

itself, but in fact only its direction is used. and the length of the translation in that

direction is calculated with an averaging scheme described in Sect. 4.6.

A very direct way to compute the max-min is to compute "shortest-distance"

vectors from points on one curve to the other curve, and vice-versa, and to take the

longest of these vectors as the max-min. The method we use is similar to this, but

not quite the same. The problem is that with piece-wise polar cubic curves (i.e. cubic

splines in polar coordinates) a shortest-distance measurement is relatively difficult

to compute. Numerically it is expensive, because multiple minima and maxima of

distance from the point may exist along the curve, and in polar space the whole

curve may have to be searched.



!--

28

An alternative is to use what we normal-to-intersect vectors in place of shortest-

distance vectors. A normal-to-intersect vector is a path along the normal line

through some point on one curve, to the normal line's intersection with the other

curve. (For normal curves from some points, this intersection does not exist, but

we will see that this is okay.) The distance along the normal line, in the direction

which immediately increases the radius of the line from the origin, is called e; a

normal-to-intersect from an "inner curve" (smaller p(O)) to an "outer curve" (larger

p(O)) has a positive e, and a normal-to-intersect from an "outer curve" to an "inner

curve" has a negative e. The point on the curve, where a normal-to-intersect vector

is computed from is called its base point, and the point on the other curve which it

points to is called its terminating point. The curves are also called the base curve

and terminating curve, respectively.

Normal-to-intersect vectors are in most cases good substitutes for the shortest-

distance vectors. Whereas a shortest-distance vector should be normal to its termi-

nating curve (marking a local minimum in distance), a normal-to-intersect vector is

normal to its base curve. By finding the point where a normal line of one curve in-

tersects the other curve, we in most cases obtain a discrepancy vector in the reverse

direction. (In such cases, the normal-to-intersect vector marks the shortest path

from its terminating point to its base curve.) For normal-to-intersects, the search

for each e is along a line. and is thus numerically quite straightforward.

Insofar as the normal-to-intersect measurements substitute for discrepancy

measurements, the principle above still applies. In addition, the condition under

the max-rain (as computed with normal-to-intersects) should approach the actual"

translation is that at least one of the normal-to-intersect vectors points in the direc-

tion of the translation between the curves. While we cannot guarantee this ahead

of time, we maximize the chances that this occurs by making normal-to-intersect

measurements in both directions-- from the original curve to the translated curve.



29

and vice-versa. In short, we propose to use the maximum normal-to-intersect mea-

surement, to estimate the direction of the translation.

4.2.1 Max-rain exceptions

This section highlights two kinds of possible exceptions to the max-rain prin-

ciple: exceptions due to non-corresponding endpoints, and exceptions due to using

normal-to-intersect measurements instead of discrepancy measurements.

When matching skylines, we must be prepared for the endpoints of the curves

to not correspond to each other. That is, while the curves must share some common,

corresponding portion of a skyline, one curve may be _longer" than the other on

either or both ends. (If the endpoints were known to correspond to each other, then

the translation could be easily calculated from endpoints only.) In fact, the end-

points are the most sensitive parts of the skylines (often located at visual inflection

points), and will most often not correspond to each other due to data noise and

vantage error.

If discrepancies themselves were being measured (as opposed to normal-to-

intersects), then discrepancies near noncorresponding endpoints could be longer

than the translation between the curves, and have little to do with the direction

or translation between the curves; this could disrupt the entire algorithm. A way to

avoid this case would be to discard any discrepancy whose terminating point is an

endpoint of its terminating curve. A practically equivalent condition would require

the discrepancy vector to be normal to the terminating curve at its terminating

point, but merely comparing it to the endpoints is easier.

Even following this rule still allows for cases, for example see Figure 4.3, where

noncorresponding endpoints can cause extra-long discrepancies. Such cases, how-

ever, are expected to be extremely rare. and have not been further addressed.

A different type of exception is mad_ possible by using normal-to-intersect



u

3O

1

Actual translation: /

/

_.- },

r anslation:'_

.--" • "X.X

Figure 4.3: Max-re.in exceptions due to noncorresponding endpoints: on the left,

discarding the discrepancies which terminate on endpoints is sufficient, but on the

right it is not. (Dashed vectors represent discarded discrepancies.)

measurements in place of discrepancy measurements. This exception, illustrated

in Figure 4.4, may result from a noisy base curve, or from a pair of curves with a

distinct irregularity.

The spline interpolation in Sect. 3.3 is typically smooth (C-2 continuous), and

filtering techniques may be applied in the future as necessary in order to prevent

noise from causing this type of exception. The case of a distinct irregularity-- re-

ferring in the right-hand side of Figure 4.4 to the "bump" common to both curves--

may demand more attention in the future. To a human matching the curves in-

tuitively, an irregularity common to both curves provides valuable clues; an au-

tonomous matching scheme should be able to at least tolerate, if not thrive upon.

such potentially valuable information. (The discrepancy measurements do in fact

take advantage of such an irregularity, because the peak in discrepancy length, taken

in a certain direction, is very sharp.)

One way to handle this exception may be to make sure that the distance

from a normal-ta-intersect's terminating point to its base curve is in fact a local



n

31

/

iw
[

¢

Actual translation.j_

Figure 4.4: Max-min exceptions due to using normal-to-intercepts on noisy or

sharply turning data.

minimum at its base point compared to its neighbors on the base curve, and not

a local maximum. Merely the fact that it is normal to its base curve Mlows for

either a maximum, a minimum, or am inflection, but to take the place of a "reverse

discrepancy" it must be a minimum. A test for this compames the curvature of the

base curve at the base point, to the measured e, but this test was not implemented

for the experiments described in this paper.

4.3 Implementation: terrain matching algorithm

The initial vantage estimate is expressed as (z0, g o f0), and the vantage

-i
estimate after i iterations of the algorithm is (f_', y'__, z_ ). The error in the vantage

estimate after i iterations is denoted (z_, -_

_ -' i (4.i)Fori> 0, y_ = Y_'+Y0

zv _ .: i .i-- -_, + "0

The ith iteration of the algorithm consists of the following steps:



32

1. Generate the global skylines which, according to the rough map, axe the sky-

lines visible from the most recent vantage estimate (_ _-1, _] _-1, i i-1).

2. Perform the "curve correspondence," determining which global skylines cor-

respond to which local skylines. Its output is a list of corresponding curve

pairs, each pair consisting of one global and one local skyline which represent

roughly the same skyline from the two sources of information.

3. Compute the "max-min," which is the longest (max) of the minimum-distance

vectors between corresponding pairs of local and global skylines, although

the mAnimum-distance vectors are approximated in the reverse direction by a

_'normal-to-intersect" procedure.

• ^ -

4. Estimate the vantage error (_0 '-1, y0 '-I, .¢oi-1), by using the max-rain's direc-

tion as a rule for point-by-point correspondence and averaging the distances

between the curves taken in that direction.

5. Update the vantage estimate by the estimate of its error:

= + (4.2)

(Compare to Equ. 4.t.)

The algorithm repeats this cycle until the magnitude of the difference between

two successive vantage estimates, that is of the vantage error estimate, is less than

a certain threshold. The details of the steps listed above are, except for the curve

correspondence, given in the following sections. The curve correspondence algorithm

has not yet been implemented and has so far been performed interactively (by a

person) rather than automatically.

From here forward we will drop the i superscripts; by default we will be in the

(i + 1)th iteration, calculating quantities with the i superscript.



33

4.4 Curve correspondence

After both sets of skylines are obtained, the curve correspondence must be

performed, to associate curves from one set with specific curves in the other. As

wiU be shown in the Results section, multiple correspondences where more than one

local skyline corresponds to the same global skyline or vice-versa are possible.

In the following sections, references to the sets of skylines are implicitly limited

to those skylines which were found to have corresponding curves in the other set.

4.5 Computing the max-min

Computing the max-re_in means selectingthe longest normal-to-intersect in

eitherdirection,from the dagger curve to the star curve or vice-versa.

We now describe the normal-to-intersectprocedure, for intersectingthe normal

to a point on the dagger curve with the star curve. Computing a normal-to-intersect

in the reversedirection isidenticalexcept forswapping the curves.

The firststep isto findan expression forthe linewhich isnormal to the dagger

curve at some 0 = On (n subscript is for "'normal point"). Define 6 as the angle

that the dagger curve at (0,_,pt(&_)) makes with a curve of constant p through that

point.

(dp'(O,_)) (4.3)= arctan pt(O,_)dO

(_ is always between -90 ° and 90°.) The line tangent to the curve points in the

direction of (0,_ - _ + 90°), and the normal line points in the direction of (0r - 6).

Next, paramecerize the normal line in terrns of e, which is the distance along the

line in the normal direction. Letting the ! subscript denote _tine," the normal line

is parameterized in cylindrical coordinates about the dagger origin as:

pt(_) = _/(z_ - c,_) _-+ (w + %_)2

Of(e) = atan2((x,_ -- c=e),(y,, + %¢))



34

where

and

(4.6)

c_ --- cos(6, - _b) (4.7)

c_ - sin(8, - ¢)

At the point where the normal llne intersects the star curve, pr(e) = p"(Oz(e)).

Thus, define

= (4.s)

and our task is to search for e : f(() = 0. This search is performed numerically using

the zbrac() and zbren_ () subroutines of [18].

The zbrac() routine brackets a root. meaning it attempts to find an el and

e2 such that f(el) and f(e2) have opposite signs. Under this condition, a root is

guaranteed to exist between el and e2. It is initialized with the interval from 0 to

f(0) = p'(8_)- pt(0_), and expands if necessary until it brackets a root. If it fa_ls to

bracket a root after a specified number of expansions, then the normal-to-intersect

is considered not to e.,dst for this 0n. The zbrenl: () routine contracts the interval el,

e2 surrounding the root until it is sufficiently small to provide the required precision.

Additional det_ls of zbrac() and zbrent () are well documented in [18].

The subroutine which calculates f(e) produces a value for p_(_t(e)) even when

01(e) is outside the star curve's valid range, by extrapolating the cubic equation of

the nearest cubic piece of the star curve to the invalid _t(e). The algorithm checks

that the solution makes a valid intersection with the star curve, after 7.bren_()

returns a root. If the resulting 01(e) lies outside the valid bounds of the star curve.

then this means that the normal line does not intersect the corresponding curve _

all. and the normal-to-intersect is considered not to exist for this 8_, just as if a

solution had not been bracketed.



35

Normal-to-intersect calculations are made from evenly spaced points on all

curves,to their correspondingcurves. The normal-to-intersect vectorsarecalculated

in both directions-- from dagger to star and vice-versa-- becausethe normal-to-

intersect distancessometimesexhibit distinct peaksonly in one of thesedirections.

The normal-to-intersect vector with the overaUbiggest magnitude (absolute

value) is selectedas the max-re_in;it is the longest normal-to-intersect vector. The

max-rain is representedby its e, and its c_ and c_ of Equ. 4.7 which represent the

direction of the normal-to-intersect vector. The direction, in terms of whether it is

a dagger-to-star normal-to-intersect or a star-to-dagger curve normal-to-intersect, is

also noted.

4.6 Direction-to-intersect measurements

This section describes how the vantage error (Zo, Y0, z0) is estimated, once the

ma_x-min is computed. To repeat, the vantage error is assumed to be a translation

between from the dagger to the star skylines.

The direction of the max-min is effectively used as a rule of point-by-point

correspondence between the two sets of curves. That is, we retain the direction of

the max-rain but not its length, and the length of the translation is then estimated

as the average of the distance between the curves, taken in this direction. A distance

from a point on one curve to its corresponding curve, taken in a particular direction,

is called a direction-to-intersect measurement.

The equations for the horizontal translation are:

1 {u_.

_0 = c=(Nt. + N,) __-_, _t-,- i=1 ,,'fi
(4.9)

= c, (:vt"-7-,v.t) '-xt-,- _-

where each &i is a direction-to-intersect measurement from one curve to another:



36

Nt, and N t are the number of direction-to-intersects which intersected in the re-

spective directions. The star-to-dagger measurements are negated for purposes of

calculating £o and _]0. Computationally, the direction-to-intersects are equivalent to

normal-to-intersects, but their directions represented by c= and c_ axe the same as

the max-min's, rather than calculated with Equ. 4.7 for each measurement.

Direction-to-intersects axe calculated from the dagger curves at equal incre-

ments of 8t, and from the star curves. However, only the direction-to-intersects that

do intersect the other curves axe included in Nt, and Art , and are used in Eqs. 4.9

and 4.10. The averaging acts to filter out errors in the max-min due to noise in the

curve data.

a

4.7 Vertical translation

Once the direction-to-intersects axe computed, the vertical distances are also

readily available; the z values at the base and terminating points of each direction-

to-intersect vector can be computed from the 0_" and 0" values at these points, z_0 is

computed as the average difference between these heights:

£ =-- :'(8_i)--z O ; (4.11)
O _V& .=

In thisequation. N_, equals N_. -6N t of Eqs. 4.9 and 4.10; the summation isover

all connected direction-to-intersects.

The 8 4 and _a denote the 8 values at the base and terminating points of a

direction-to-intersect vector (not necessarily respectively). These values are readily

available during the direction-to-intersect computations for Eqs. 4.§ and 4.10. Con-

sider for instance a dagger-to-star direcnon-to-intersect: 8 4 is pre-specified, and 6_:x

is obtained as (apply Equ. 4.5, replacing the normal-to-intersect distance e with the

direction-to-intersect distance A):

8"_ = #t(_) = atan2 ((z,_ + c=:._%), (y,_ + c_)) (4.12)



3T

where

(4.13)
y_ ----pt(e_)sinO_

c_ a_ud c_ represent the direction of the max-rain; and _ is the direction-to-intersect

distance. Eqs. 4.9, 4.10, a_ud 4.11 are thus calculated simultaneously with each other,

one direction-to-intersect at & time.

The va_utage error estimate (a_o, _o, _o) thus calculated is added to the previous

vaoutage estimate in each iteration, to produce _ revised va_utage estimate.



CHAPTER 5

SIMULATION RESULTS

The terrain and map modelling, skyline generation, and terrain matching algorithms

of Chapters 2, 3, and 4, respectively were simulated in the form of C programs on

Sun 3 workstations. This chapter describes the main results of our simulations. A

brief description of the software is provided in Appendix A.

5.1 Individual pairs of curves

This section presents the results of applying the curve-matching technique to a

single pair of test curves, under two conditions: one with noise in the data, and one

without. We demonstrate the algorithm on a single pair of curves in order to show

the individual steps of the terrain matching algorithm. When full sets of skylines are

compared to each other, the large amount of intermediate data involved is difficult

to convey in a meaningful wav.

Each experiment performed one iteration of the following sequence of steps:

• Compute the normal-to-intersectvectors.

• Form epsilon profiles of the normal-to-intersect measurements, to determine

the max-rain.

• Compute the direction-to-intersect vectors, in the direction of the max-rain.

• Average the direction-to-intersect measurements to estimate the horizontal

translation between the curves.

• Find the vertical translation, using the max-min as a rule of point-by-poin;

correspondence between the curves.



39

The results were generated by program nm4, (see Appendix A).

The test curves used here were generated from an analytical function (an ex-

ponential spiral) in cylindrical coordinates. Sample points of the analytical function

were taken for each of two curves in the test. The two sets of samples were taken

over different (but largely overlapping) segments of the spiral, so that the endpoints

of the test curves did not correspond directly to each other. Then one of the sets of

sample points was converted to Cartesian coordinates, translated, and re-converted

into cylindrical coordinates. Finally, each curve was interpolated with natural cubic

splines in the cylindrical coordinates. In the case of the "noisy" ex-periment, each

sample point was perturbed with independent, zero-mean Gaussian-distributed er-

rors in the p and : components, prior to cubic spline interpolation. Different stan-

dard deviations were specified for the p and z errors.

We interpret the two curves, shown in Figures 5.1 and 5.2, as the "star"

and "dagger" curves in the terminology of Chapter 4. They are assumed to rep-

resent two perceptions of the same curve from two different vantages (but with

non-corresponding endpoints). The star curve represents the global skyline for an

"incorrect" vantage estimate, and the dagger curve represents a local skyline, con-

ceptually translated from its unknown but true position, to the known but incorrect

vantage estimate. The translation which the loca.1 skyline underwent was actually

the negative of the error in the vantage estimate (_0, fro,-"0), and the algorithm

proceeded to estimate this translation by "matching" the skylines back together.

Our experiments used the following analytical functions for generating the test

curves"

p,,(o)= lo.oe+ I.o (5.1)

= (s.2)

The dagger curve consisted of 10 samples, evenly spaced in 0 from 10 ° to 100 °. The

star curve consisted of 10 samples in the range from -25 ° to 90 °, and the sa.mptes



i

40

N

I

m

mo

°T

_L_
i

-5

X I

x_

×

k

o.

.x
o'

Local Curve.

.._..-.x-. Global Curve.

X

r T I , I ' '

5 10 15 20 25 30 ]5

X

Figure 5.1: Star and dagger curves for noiseless test case.

t±

r
m

i

P

,-y

°T
(.ram

I

t ..

NO_
/

J

-7
1

-T
t

i
r,o

-10 0

Figure 5.2:

I 1 I ' 1 ' , , , ,

. -X- ..... >(" -.. I
I

.X "_£

"'..

i
!
i
I

P I I I

----'- Locsl Curve. !
I

"'_'"'_'" Global Curve. i
1

t : I T I r

theta (de__l-ee_)

Height data for the noiselesss_;arand dagger curves.



--

i--

41

were then translated by (Xo, Yo, Zo) = (5., 2.5,2.5).

this translation are:

The formulas for carrying out

. (p,,(0,) sine, + yo) (5.3)

p; = _/(p,p(O_)sinO_ + yo) 2 + (p,p(O_)cosO_ + Zo) 2 (5.4)

= + (5.5)

After the translation, 0* ranged from about 1.1 ° to 76.8 °. In Figure 5.1, the samples

from which the curves were interpolated axe highlighted by x's and +'s.

The results of the noiseless experiment, which matched the curves shown in

Figure 5.1, are shown in Figures 5.3-5.9. Figures 5.3 and 5.4 show the normal-to-

intersect vectors. As e.xplained in Section 4.2, the normal-to-intersect measurements

were made in both directions. The longest of all of these was chosen as the maxmin.

Next axe the direction-to-intersect vectors, Figures 5.5 and 5.6, computed in the

direction of the max-rain.

The translation is estimated as the average of the direction-to-intersect vec-

tors. In this case, the estimated translaLion was (5.040, 2.425, 2.500), compared

to a _true" value of (5.. 2.5, 2.5). Figure 5.7 shows that the curves are indeed

well matched when the local curve is translated back according to the estimated

translation between the curves. In this figure we denote the re-translated curves as

_double-dagger" (_.) curves. Whereas the origin of the star and dagger systems is

the estimated vantage prior to processing, the double-dagger origin is the estimate

after processing. This third coordinate system for the local curves is illustrated in

Figure 5.8. In a successful match, the double-dagger curves are roughly coincident

with the star curves.

The matching the vertical data is illustrated in Figure 5.9. This figure deserves

some explanation: the star curve is still piotted as z"(O") vs. 0", as in Figure 5.2.

The double-dagger : function, however, is also plotted as a function of 0", because



i m

l
_a

o-

o--

1

_"-i-I I
-5 0

I I I 1 I l I I I.
Local Curve. -L

I

-_'-_- Global-Curve. I

"'"x _ Normal-to-irltersect lines.

/

__ a Unsuccessful attempts. T
/

! .i
x

-I-

5 10 15 20 25 30 35 40

5E

Normal-t(>-intersect vectors from the noiseless da_er curve to the star

t,o
I I I I I I I l I _I

m _ Locol Curve. -]-

..K.-._-- Global Curve.

X

Normal-to-intersect vectors from the noiseless star curve to the dagger



m

43

m

]

t_ mn

I [
-5 0

Z l X l X I l I I/
Local Curve. -t-

/-_'--_- Global Curve.

@ --" _ Direction-to-intersect lines,

",, c: = Unsuccessful ctternpts --

_ I-

X

I ] I _ I I ] I
5 10 1.5 20 25 30 35 4<)

Figure 5.5: Direction-to-intersect vectors from the noiseless dagger curve to the star
Cll.rve.

1

t_o

I

¢..n--
I
I
I

°Z
1

-5

Figure 5.6:

Curve °

I t I I I I ] I I
Loccl Curve.

' ":'_'-"-- Globcl Curve.

Direction-to-intersect lines

Unsuccessful attem_,ts. I

,"T--

m

I I T I I I I

0 1 1 20 ...'_ .30

X

"i--
!

35 -tO

Direction-to-intersect vectors from the noiseless star curve to the dagger



w

44

N2

L_

Ca

±
I

-5

Figure 5.7:

curves.

I I :

\
l

)
°/

x

' I ' ' T
L I i I i

--Tronstated Iocol curve.

•.x...._-. Global curve.

T

' I I
6 5 lO 15

r
t ! Ii , , ; I j

25 30 35 402O

X

Curve match based on direction-to-intersect averaging for the noiseless

>

i

0t _ Xo
(Previous location estimate.)

+
X

Figure 5.8: Three. versions of the "local _ system: the locM (l), dagger (t), _nd

double-dagger (:_) coordinate systems.



45

N

4:b--

O--

I --

I
bJ t

-10

x

; I P r T ' I , , I Ii i i i i i I i I _ --

F
_L

I I

'_'"'_" Global curve.

--e--e-_ Double-dog before vertical translation.
--Translated local curve.

t I I l I I I I I

' ' 2o 3b b ' ' ' eb ' '0 10 4- 50 60 70 90 100

theta

Figure 5.9: Matching of the vertical data for the noiseless case, based on the corre-

spondence developed from the horizontal data.

we want to compare the curves according to the point-by-point correspondence rule

that the max-rnin provides. This requires a transformation relating the two systems,

specifically 85 to 8". We call this the correspondence relationship, denoted with a c

subscript, and the horizontal geometry of Figure 5.7 indicates that:

8_(8") = ac;_n2 ((p"(_') sin 8" - go), (P"(_') cos 8" - £o)) (5.6)

+ + _..The double-dagger curve in Figure 5.9 is thus :+(8+_(8")) vs. The ¢'double-dagger

curve before vertical translation" shows the vertical distance between the curves

when the horizontal correspondence is applied to the data without computing _0.

Equ. 4.9 averaged several measurements of this vertical distance to calculate _0,

which resulted in the double-dagger curve matching _he star curve vertically as wet]

as horizontally.

In the noisy version of the experiment, the standard deviation of the errors

in p and z were .25 and .05 meters, respectively; the resulting noisy curves are



u

46

bO

O

Table 5.1:

1I

L/I--

m

I
_m

F
I

-5

Zo Yo Zo
Actual translar.ion 5.0 2.5 2.5

Estimation without noise 5.040 2.425 2.500

Estimation with noise 4.937 2.770 2.511

Summary of estimation results for a single pair of curves.

I ' ' T t p
i I t I _ t

"---- Local Curve.

x.. "'_""_'" Globcll Curve. ]
"X

, i
'x

k

* T.'

' ' l 1! ! J , , _

O 5 10 15 2O 25

Figure 5.10:

X

3O 35

Star and dagger curves for noisy tes_ case.

rt
I

4-0

shown in Figures 5.10 and 5.i1. Figures 5.12-5.17 illustrate the results of :he noisv

experiment, in the same format as Figures 5.3-5.7 and 5.9. The results of the both

experiments are summarized in Table 5.1.

5.2 Whole sets of curves

This section describes the results of simulating the whole terrain matching

algorithm (except curve correspondence). The results were generated with program

can6 (see Appendix A).



4T

N

I

m

t',.)

--10

I I I I : ! ' I• I I

X _ %')<.

.>C "X...,
• ,°°

.- %

.X X

i

I_
q

.°

I

m

0

Locol Curve.

--_<----_--Globol Curve.

' b ' t , , b 'l o 2o 3 ,,o _o 6o 7o 8 ._o _ o
theta (degrees)

i
I --

Figure 5.11: Height data for the noisy star and dagger curves.

I

_J

f,o

_<_-_
I
L
I

O--

I
J_

Figure 5.12:

curve.

, , , _ _ , iI
-------Locoi Curve.

l "'K--"" Gl°b°l Curve t

Unsuccessful ottemots. --

T

>(

I

L
T

I I

x

' [ ',, !!,
25 30 35 &O

Normal-to-intersect vectors from the noisy dagger curve to the star



48

r_3
£j1_

o]-

(.n -

cj_

C_

I
c_T,

I,! I , ', ', I 1 ,
-'---- Local Curve.

•-x..-._.. Global Curve.

×_? Normal-to-intersect lines.

•,, _ n Unsuccessful attempts. --__

"T
-5

Figure 5.13:

cul've.

I

I

t,J

(j1 m

I
C_

I

I

-5

I I ' I ' I , , TI

0 5 10 15 20 25 50 5 40

Normal-to-intersect vectors from the noisy star curve to the dagger

X

Figure 5.14: Direction-to-intersec: vectors from the noisy dagger curve to :he star

curve,



49

1

I

Na

rG1--

0 --m

I

[
I

-5

Figure 5.15:

curve.

(Jl ----

bO

O--

(.D --

I

i

--D

[ i I : i I l 1 i_
-- local Curve. --I

•-_(----"--Global Curve. I
I

-
-

, I

° f
, ! ' i ', ' I ,k

5 IO 15 20 25 3 35 4-0

X

Direction-to-intersect vectors from the noisy star curve to the dagger

' ' ' [ l I I
i I I [

Translcted local curve. ]

--_----_-GloDGI curve.

I

i

I

25 30

I i I

Figure 5.16: Curve match based on direction-to-intersect averaging for the noisy

curves.



o_

o_

N

I ¸ I I I ' ' ' I I T I-- I i I & I --

I

I __

I

--10

e'"_°"'"'"" _

.- \

•"_"-'_'"Global curve.

-e---e-Oouble_dag before vertical translation.--
--Translated local curve.

I I I II l II I l [ __

0 1(3 2(3 30 4_ 50 60 70 8(3 90 100

theta

5O

Figure 5.17: Matching of the verticaJ data for the noisy case, based on the corre-

spondence developed from the horizontal data.

The terrain for the simulation, depicted in Figure 5.18, was the terrain de-

scribed in Section 2.2-- periodic in the z and y directions with a _monolith" su-

perimposed onto it. Theuser specified a terrain matching problem to the program

by entering the vehicle's actual vantage or _local vantage", and the vehicle's initial

vantage estimate or _global vantage." The program then generated a set of local

skylines from the terrain function, to simulate skylines collected from the sensors.

The important distinction between local and global skylines, preserved in the simu-

lations, was that the algorithm was given a single set of local skylines which it could

not change, but it was free to generate global skylines for any test vantage above

the terr_n.

Given the estimated vantage and the local skylines, the algorithm iterated

through the five steps enumerated in Section 4.3. As mentioned previously, a curve

correspondence algorithm has not yet been implemented, mud so each time the al-

gorithm reached that step, it displayed the curves graphically on the workstation



/ /
/

51

Figure 5.18: Example 1. the "true" location of the vehicle.

screen,and prompted the user to specify amd/or editthe curve correspondence. The

termination criterion for the algorithm was that the vantage estimate change by less

than 0.1 meter in any single iteration.

In the experiments described below, the model of the rough map of the sim-

ulated terrain was bypassed during generation of the global skylines, and instead

the skyline generation routines had direct access to the true terrain function. In

other words, the terrain matching algorithm was effectively simulated using a per-

fect global map. All linear coordinate measurements are in meters.

Example 1 was the following problem: the vehicle's true vantage was (=,, y,, z_)

= (2, 38, 6.43), with a yaw of 90 °, or facing north. A gaphical depiction of the vehi-

cle at the true vantage is shown in Figure 5.18, and this vantage is two meters to the

right, and two meters forward of the top of the hill in this view. (Vehicle is dr&wn

with the actual pitch and roll for its position, but pitch and roll are neglected in the

analysis. The vantage is assumed to be two meters above the terra.in, regardless of



52

i

Iter. _ _/_ z%

0 0.00 40.00 7.00

I 1.43 38.35 6.27

2 1.48 38.12 6.38

3 2.13 37.82 6.51

4 2.10 37.95 6.44

5 2.09 37.96 6.43

Remaining Incremental Overall

Error Mafia. Improvement Improvement

2.89

0.69 76.1% 76.1%

0.54 22.4% 81.3%

0.23 56.5% 92.0%

0.II 52.4% 96.2%

0.I0 11.8% 96.5%

Table 5.2: Progress in each iteration of Example 1. Actual vantage (2, 38, 6.43).

the gradient of the terrain on which the vehicle lies.) The terrain height at z g = 2,

yg - 38 is z _ = 4.43, and the vantage is two meters above the terrain. The vehicle

was given an initial vantage estimate at precisely two meters above the top of the

hill, (_,O,y. 0, z-0) = (0, 40, 7.00). Before calling the terrain matching algorithm,

the program generated skylines from the actual terrain function for the actual van-

tage, to serve as the local skylines. The algorithm was given the local skylines in

cylindrical coordinates about the local vantage, and the estimated vantage.

This example took five iterations before termination, and the effects of each

iteration are recorded in Table 5.2. In the table, the error magnitude is the distance

between the true vantage and the vantage estimate. Percentage improvements were

calculated as [1 - (new error magn.)/(old error magn.)](100%). Figure 5.19 graphs

the horizontal projection of the sequence of vantage estimates, as the algorithm grew

closer to the true vantage. The dotted lines show the range of azimuth in which

skylines were collected, which was ±60 ° from the yaw. Each 'x' represents one of

the vantage estimates in Table 5.2. From its initial estimate of (0, 40, 7.00), the

algorithm settled at an estimate of (2.09.37.96, 6.43).

Figures 5.20 and 5.22 show the corresponded curves at the initial and final

vantage estimates, illustrating the curve _matching" accomplished by the algorithm.

Figures 5.20-and 5.22 show the horizontal projections of the curves, and Figures 5.21



53

L,a

1
Performance (5 iter:)

L _ i I I

.°° ..,.-'*°°'°°"°'"'

' ' I 1 1 I
-1 0 1 2 3 4. 5

i

Figure 5.19: Example l: sequence of vantage estimates.

and 5.23 show height (=" = zf) vs. azimuth (8" = St). The solid lines indicate global

skylines, and the dotted Lines indicate local skylines. Only the corresponded curves

are shown. Note the multiple correspondence in the initial sets, in which two global

skylines corresponded to the same loca_ skyline. Also note that a local skyline (at a

horizontal p of about five meters) which did not have a corresponding global skyline

at the initial estimate, did have one at the final estimate. The two sets of skylines

grew more similar as the vantage estimate grew more accurate.

The correspondence shown in Figure 5.22 was performed for illustration only

and was not part of the algorithm's normal execution. The algorithm terminated

immediately after determining that the fifth iteration made a sufficiendy smallvan-

tage update, and did not process the global skylines at its final vantage estimate.

Tha_ is, these would be the corresponded curves of a hypothetical sixth iteration.

More figures in the form of Figures 5.].9 and 5.20 are shown for Examples 2-4 in

Figures 5.24-5.29. respectively. The algorithm's performance on the these exampies



w

64

q

m

Figure 5.20:

data).

SO

.° "'°°'°°°°B_'°°e'_°_°'°°°°_e°_ i • "'_°_°_

• ...% .......:.," ! ........ ,.,...

,_..., .....B ":I i ",\ "'"', ..""d

• %a _ ,,° ,_ •% o°°"..............,..o............
°S° '% ,°,°°°

"" _0 .-°'"

°° _ mo

Example 1: corresponding curves for the initial estimate (horizontal

_')im

.l_.m

1 1 X 1 I I

._.o. ._°,

2 ."/""" "'''':. "//

- ___//

I I

150

Figure 5.21:

1 I I 1 I

oS

14.0 1,30 1 0 1 100 gO 80 7 60 50 4. ,.30

azimuth (degrees)

Example 1: corresponding curves for the initial estimate (vertical d_ta).



u

55

B

_mB

I [ 1 l I t I 1 I [ I !

_Q

i I I I '
1:50 14.0 130 120 110 100 90 80 70 60 50 4.0 30

azimuth (degrees)

Figure 5.23: Example 1: corresponding curves for the final estimate (vertical data).



56

5O

• o_o.°°_ o°°°°'°°°°°.°_°°° •'-,•o.•

°•'.•o

o•°w °°°* / "'•.

• •° ow•oO°•°• o°_° °_•°Q-O•_o_ *•o

..--'" / • -.
_l, "•• o° -" _ "•-.

..-'" . ._o \_._ ".... ..'"" •0
""•'.":-.. I.•i:...... i ...... ..:""

• • .°• # * _. o,"
°% .° °, , %'., ,.

""'-'.'.i
• o°"

• o.

°•'••%_•,°,'

Figure 5.24: Example 2, horizontM curve data.

is summa.dzed in Table 5.3. In Example 2, the vehicle faced a yaw of 0 ° (west), lying

one meter north and one meter west of the origin (the vertical line coming out of the

terrain in Figure 5.18; the initial estimate was one meter south and one meter east

of the origin. In this example, the second iteration was particularly successful, even

though the first iteration made only marginal progress (19.1%). The first iteration

brought the vantage estimate close enough for an excellent match to exist in the

second iteration.

Example 3 put the vehicle about ten meters north of the orion, at the steepest

part of the descent in the valley, facing northwest• The bulk of the progress in this

example was made in the first two iterations; the vantage estimates continued to

improve at a consistent but less dramatic rate after that.

In Example 4, the vehicle was facing north, ascending the hiI1 at the origin

from the south. Once again, there were some iterations-- in this case, particularly

the second-- which produced only marginal progress, but this progress was sufficient



57

I __

P erformanee (3
! I

-2 -1 0

Figure 5.25:

P

.:

:>
*'... '

*°

X

iter.)
X

**,

I °°' I I
2 3 4-

Example 2 results.

• ...................."A'_:B-...................

"'" °'*. •.s°.. -°°'"

-_'_ .o ....... . oY
"% . ,-'_ "°%o • '

"" 30 "". .'"%%% . ,

• . °."

%"......._" ............................. w i/_

_. , ."""'" .....-.:::...._.o....:::......"',. .."

>.
- .....!_..'_--_

"-,. °°" , -o. , *

• °°"

%,. o,O'

Figure 5.26: Example 3, horizontal curve data.



l

°I
_O

l
-3

Performance (4 iter.)
[ I _ l I

l l

..............................i...................i'
-2 -1 0 1 2

X

Figure 5.27: Example 3 results.

50

....................-6"_ ................
.._" °°-,°

..°° _, •

°° s ° • -.
°_ °° °° ".

t _ "°.o'° -.

.," "..

.g_ ....../................................................... ....

"X "'" ' T_.'<
"". °.'° ; "". .'" "O

"'. .'" ' ]O _ "'. "'

//.'*__ "'° ....°" ,P'.°
,o .-"

°°_-. • -.. - ""

°BOO...°'_°_°°'Q_°°°°'I_°,.O°

,° ".. ". 0

",° °°.''° "___o._°"

"'". 10 .""

"°° °° °o°_o-_--.°°o _°. ..."

"""2 : ::c

•. _.o°
"°. ! ..°°

,o_°°

Figure 5...28: Example 4, horizontal curve data.



w

59

I

I
(.A

l

I

o_ T ,
l

-3

Performance
: : i

B

"%'°., ,°

°,

"%,.

",...

'%....

"",...

o.

"-...

"*'....

""'"'""

-2
I

-1 0

X

Figure 5.29:

(5 iter)
I I

....'_

...,"
.°

.....°"

...-"

o.."

...'•

.o..'"

...."

1 2 3

Example 4 results.

]
I

lixample bo,--i (Tr_i
No. VLnt.i_

I (2..3.B., 6.43]

2 (i.. i..6.as}

3 (0.. ii., 1.43)

4 (0..-4.. 5.36)

i i IEMtina_ gr_r Impmn_-,,t

(o.. 4o.o.r.om I _° 2_9 I 76.1%

(-i., -i.. 6.85) i 0° 2.8.3 [ 19.3%( 0., 9., 2.57) I 45o 2.30 70.3%

( 0.. -6.. 4.63) { 90 ° 2.35 i 70.,.5%

Iter_ m J Firta2

Terminate [ Error

5 I 0.103 0.03

4 U.09

5 0.04

Table 5.3: Performance summary for Examples 1--4.

to facilitate better matching in successive iterations.



CHAPTER 6

CONCLUSION

The terrain matching problem has been described in the context of autonomous

vehicle navigation over a 2½-D unstructured terrain, such as the surface of Mars. It

consists of finding the vantage point of the vehicle. Our approach to the problem

makes use of "skylines," or occluding contours of the terrain which are visible from

the vantage. The skylines, unlike boulders or other conventional "features," should

be visible (or estimable) both from onsite and flyby observations. By comparing

two versions of these features, from the sensors and from the map, terrain matching

finds the relationship between their respective coordinate frames. In this work, the

rotational relationship between the two coordinate frames is assumed known, and

the terrain matching algorithm must update the translational vantage parameters,

given an initial vantage estimate.

We approximate the two sets of skylines as identical, even though the actual set

of skylines depends on the particular vantage from which they are seen, and thus an

error in the vantage estimate causes the skylines to be slightly different. Given that

the curves are the same, but are represented with respect to two different vantages--

the true vantage and the estimated vantage--- the representations of those curves

with respect to their vantages will be related by the same translation (in the reverse

direction). The problem is thus reduced to finding a translation between the two

sets of curves, when their vantages have been overlaid onto each other. We refer

to this as translating the locally seen skylines into the _dagger" coordinate system,

which is coincident with the coordinate system in which the skylines from the global

map are represented.

The search for the translation between the curves is based on a "Ma×-min

Principle," even though exceptions are possible when using realistic curves that

(_0



61

have noncorresponding endpoints. We use normal-to-intersect calculations in place

of shortest-distance measurements to simplify the computation. The longest of these

is chosen as the max-rnin. The max-rain's direction estimates the direction of the

horizontal translation between the curves, and the average direction-to-intersect

distance between the curves in that direction estimates the length of the horizontal

translation. The vertical component of the translation is also found by using the

max-rain's direction as a rule of point-by-point correspondence, and averaging the

vertical distances between corresponding curves.

Each iteration of the algorithm generates a new estimate for the vehicle's

vantage point, by adding the estimated 3-D translation between the skylines to the

previous estimate. In successive iterations, the local and global skylines grow more

similar as the vantage estimate grows more accurate.

The method introduced here lies in the category of _feature matching" as

opposed to "iconic matching," in the terminology of [11]. The advantage of feature

matching is that particular data is extracted from the two sources of information

(the local and global maps) prior to comparing the data, rather than matching

the entire maps to each other directly. The compuatational complexity is reduced,

because only a small subset of the available data is processed in detail. We must

acknowledge, however, that the computational advantage of using feature-based

matching is blunted by the fact that extracting the feature data, that is, generating

the skylines from the rough map, is relatively expensive.

Our method also has a fundamental distinction from the ``cost function" ap-

proaches, for instance [13] and [3, sect. 5]. These evaluate a cost function represent-

ing the "quality of match" between the two sets of data in a grid of trial vantages,

and update the vantage based on those samples of the cost function. Although the

method introduced here also requires repeated iterations of vantage estimation when

applied to noisy skylines, each iteration updates the vantage estimate based on only



62

a single prior estimate, and not on a whole grid of trial vantages.

Except for the curve correspondence step, the algorithm has been successfully

implemented for simulation by C language computer programs. The algorithm has

performed well on a variety of test cas_, such as the examples given in Chapter 6.

These examples demonstrate that even iterations which provide marginal improve-

meat are valuable, because the resulting skylines at the new vantage estimate match

the local skylines even better.

The algorithm's computational efficiency has been difficult to evaluate because

the simulations are inherently graphics-intensive. Since the curve correspondence is

performed by the user at run-time, a large amount of intermediate skyline data has

to be displayed which would otherwise not be necessary. The graphics generation

puts a substantial "overhead" burden on the current programs, but the algorithm's

cycle time is approximately 10 to 14 seconds on a Sun 3/60. This duration includes

the generation of skylines from the rough map but does not include the time spent

waiting for theuser to edit the curve correspondence.

A limitation of skyline-based terrain matching is the need for enough skylines

to be visible from a vantage to contain the required 3-D information. This depends

on two factors: first, the azimuth range of skyLine collection by the sensors and

the rough map (-*-60 ° in our examples) must be wide enough. A good ma.x-min

depends upon at least one corresponded skyline to produce a normal-to-intersect

measurement in the direction of the translation between the curves. Increasing the

azimuth range of skyline collection increases the chances of some skylines having

normals in the direction of the actual translational error. Second, it is up to the

particular terrain on which the vehicle lies to provide adequate skylines for the

algorithm to collect and use. A terrain which is simply too flat and non-descript

will not provide enough skylines for reference. We can control the first factor, but

the second depends solely on the environment in which the algorithm is applied.



63

In its current formulation, the algorithm is somewhat susceptible to errors in

the max-rain by simply taking the single biggest normal-to-intersect. As the azimuth

width of skyline collection is increased beyond about d=75 °, certain anomalies (de-

scribed in 4.2.1) become more common because of long, twisty skylines with multiple

correspondences which arise. Such skylines contain a great amount of information,

but also a lot of ways in which strange relationships may appear.

One way to improve the algorithm's robustness in this regard would be to

insert a test for each normal-to-intersect, making sure sure that it represents a local

rain]mum and not a maximum distance, from its terminating point to kits base

curve.



LITERATURE CITED

[1]

[21

[3]

[4]

[5]

[6]

[7]

Is]

[9]

[lO]

[11]

Brian Wilcox and Donald Gennery. A mars rover for the 1990's. Journal of

the British Interplanetary Society, 40:484--488, 1987.

C. N. Shen and George Nagy. Autonomous navigation to provide

long-distance surface traverses for mars rover sample return mission. In Proc.

Fourth IEEE [nternationaI Symposium on Intelligent Control, pages 362-367,

Albany, NY, September I989.

C. N. Shen and Lance Page. Fusion of gross satellite sensing and laser

measurements by skyfine map matching for autonomous unmanned vehicle

navigation. In Pvoc. SPIE Optical Engineering and Aerospace Sensing

Symposium, Orlando, Florida, April 1990.

C. N. Shen and Lance Page. Skyline-based terrain matching using a max-rain

principle. Technical report, NASA Center for Intelligent Robotic Systems for

Space Exploration, Rensselaer Polytechnic Institute, October 1990. CIRSSE

Report #72.

Lance Page and C. N. Shen. Analysis of terrain map matching using

multi-sensing techniques for autonomous vehicle navigation. In SPIE Syrnp.

on Advances in Intelligent Systems, Boston, Massachusetts, November 1990.

J. C. Mankins (ed.). Mars rover technology workshop proceedings. Technical

report, Jet Propulsion Laboratory, April 1987. JPL D-4788.

C. N. Shen and George Nagy. Autonomous terrain navigation using a

visibility-oriented digital terrain model. In SIAM Conference on Geometric

Design, pages 362-367, Tempe, Arizona, November 1989.

Eric Krotkov. Mobile robot localization using a single image. In Proc. IEEE

Robotics and Automation Conference, pages 978-983, 1989.

C. Ming Wang. Location estimation and uncertainty analysis for mobile

robots. In Proc. [EEE Robotics and Automation Conference, pages

1230-1235, 1988.

Paul R. Klarer. Autonomous land navigation in a structured environment.

IEEE Aerospace and Electronic Systems Magazine, 5(3):9-11, March 1990.

Hebert, Kanade, and Kewen. 3-D vision techniques for autonomous vehicles.

Technical report, Carnegie Mellon University, .a_ugust 1988.

CMU- RI-TR-88-12.

64



65

[12]

[13]

[14]

[15]

[16]

[17]

[Isl

Fu, Gonzalez, and Lee. Robotics: Control, Sen_in9, Vision, and Intelligence.

McGraw-Hill, 1987.

Donald Gemaery. Visual terrain matching for a mars rover. In Proc. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

San Diego, California, June 1989.

Long Quan and Roger Molar. Matching perspective images using geometric

constraints and perceptual grouping. In Proc. IEEE, pages 679-684, 1988.

Jian-Der Lee, Jau-Yien Lee, Chin-Hsing Chen, and York-Yih Sun. A new

approach to robot guidance in an unfamiliar environment using

indication-post. In Proc. IEEE Robotics and Automation Conference, pages

1433-1438, 1989.

Oilvier D. Faugeras Nicholas Ayache. Building, registrating, and fusing noisy

visual maps. International Journal of Robotics Research, 7(6):45-65,

December 1989.

M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade. Terrain

mapping for a roving planetary explorer. In Proc. IEEE Robotics and

Automation Conference, pages 997-1002, 1989.

William H. Press, Brian R. Flannery, Saul A. Taukolsky, and William T.

Vetterling. Numerical Recipes in C: The Art of Scientific Computing.

Cambridge University Press, 1988.



APPENDIX A
SOFTWAR.E SUMMARY: PROGRAMS AND MODULES

The terrain matching software package consists of three programs, and several "mod-

ules" which constitute the building blocks for these programs and other possible

terrain matching programs in the future.

The three main programs axe:

t7 -- _TerraLu program, version 7". Interactive program to demonstrate skyline

generation for the simulated terrain. (Generated the examples shown in Sec-

tion 3.4.)

ram4-- "Max-rain demonstration, version 4." Graphically demonstrates the steps

of the terrain matching algorithm for a single pair of curves.- Command-line

argument may be used to specify noise injected into the data. (Generated the

results presented in Section 5.1.)

cm6-- "Curve matching, version 6." Demonstrates the whole terrain matching

algorithm except for curve correspondence which is performed by the user (in

an interactive, graphical environment). Also supports other interactive modes

for skyline generation and display. (Generated the results presented in Section

5.2.)

An additional program is "t5, a predecessor of 1:7. It has a somewhat more primitive

and less modular implementation than "=7, but includes a "demonstration" mode

which graphically shows individual steps in the skyline collection.

The main analytical modules are:

sg-- "Skyline generation module." Skyline generation as described in Chapter 3,

from either the global map or the actual terrain function.

ram--- "Max-min based terrain matching module." Implements the algorithms of

Chapter 4 for computing the max-min, and for performing the direction-to-

intersect averaging. Algorithm is not complete, however-- curve correspon-

dence is not implemented.

The modules for supporting graphics output axe:

plol;-- "Plot module." Provides basic graphics support, and provides a reasonably

convenient utility for 2-D data plots, including:

• Rectangular and polar modes.

• Bar plots.

• Axis drawing.

• Labeling of axes and data.

66



67

Implementation is built upon the SuaCore graphics library.

"=gl-- "Terrain graphics, module 1." Provides an "aerial view" of the terrain, and

of a _rover" on top of the terrain.

Additional support modules are:

ter-- "Terrain module." The terrain model described in Section 2.2.

map--- "Map module." The map model described in Section 2.3.

_4-- "4-dimensional math module." Basic math utilities, especially 4-D vectors

and matrices.

point-- "Point module." Provides a data structure for 3-D "points," in rectangu-

lar, cylindrical, or spherical coordinates. Supports linked lists of points, linked

lists of linked lists of points, and conversions between the three coordinate sys-
tems.

info--- "Information window module." (Used only by program _5-- essentially

"phased out.") Provides a "help and information" window, based upon the

plot module and the SunCore graphics library.


